
NASA-CR-  54792 
I 

‘ ff 653 July 66 
I?, if 

I HYDRODYMAMIC JOURNAL 

-4 

(THRU) 

L 

= ,  (ACCE 

> / 
“ J  $9993 
- 9 7  (CODE1 

z 
(PAGES) 

2 

IORYI 

GPO PRICE $ 

CFSTI PRICE(S) $ 

Hard .‘copy (HC) { d o  
Microfiche (MF) 

[ I  BY 
<\ 

J. D. McHUGH, H. E. NICHOLS, 

p r e p a r e d  for 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  

CONTRACT N A S  3 - 6 4 7 9  

SPACE P O W E R  A N D  PROPULSION SECTION 
MISSILE A N D  SPACE DIVISION 

G E N E R A L  @ E L E C T R I C  
C I N C I N N A T I ,  OHIO 45215 



NOTICE 

This roport was propand as an account of Govommont sponsored 
work. Noithor tho Unitod Stator, nor tho National Aoronautics 
and Spaco Administration (NASA), nor any porson acting on 
bohalf of NASA: 

A) Makos any warranty or nprosentation, oxprosred or 
irnpliod, with mspoct to tho accuracy, completonoss, 
or' usofulnoss of tho information contained in this 
report, or that tho US. of any information, -ratus, 
mothod, or procoss disclosed in this nport may not 
infringo privatoly owned rights; or 

B.) Assumos any liabilitios with rospoct to the use of, 
or for damagos resulting from tho uso of any infor- 
motion, opporotus, method or procoss disclored in 
this nport. 

As usod ab-, .parson acting on bohalf of NASA' includes 
any omployoo or contractor of NASA, or anployoo of such con- 
tmctor, to tho oxtent that such omployoo or contractor of NASA, 
or omployw of such contractor propans, disuminatos, or 
providos actiss to, m y  information pursuant to his omploynnnt 
or contract with NASA, or his omployment with such contractor. 

Roqmsts b r  copios of this roport 
should bo roforrod to: 

Natianal A m a u t i c s  and Spaco Adminishation 
Offico of Sciontific and Tochnical Information 

Washington W, D.C. 
Attontion: A F S A  



I * '  

I 
I 
I 
I 

HYDRODYNAMIC JOURNAL BEARING PROGRAM 

QUARTERLY PROGRESS REPORT N O .  1 

Covering the  Per iod  
May 29, 1965 through J u l y  29, 1965 

by 
J . D .  McHugh and H.E.  Nichols  

W , D . C .  R ichards  and H. C . .  Lee 

Approved by 
E. Schnetzer ,  Manager 

Development Engineer ing 

Prepared f o r  

N A T I O N A L  AERONAUTICS AND SPACE ADMINISTRATION 

Cont rac t  NAS 3-6479 

Technica 1 Management 
NASA - Lewis Research Center  

l .-uILuI I u v Y = l  ~ ~ ~ ~ l r l u l u g y  Zlrancn 
Joseph P. Joyce,  Technical  Manager 

X T , , ~ - I  -.-,- n-..--- m -  - 7 -  

RESEARCH AND DEVELOPMENT CENTER 
SPACE POWER AND PROPULSION SECTION 

MISSILE AND SPACE DIVISION 
GENERAL ELECTRIC COMPANY 

C I N C I N N A T I ,  O H I O  45215 



TABLE OF CONTENTS 

ABSTRACT 

S UlvIMARY 

Forecas t  

I INTRODUCTION 

I1 ROTOR-BEARING SYSTEYE DYNAVIC ANALYSIS 

1. Purpose o f  Analys is  

2 .  Determina t ion  o f  Sea r ing  C h a r a c t e r i s t i c s  frc,rr! 
Experimental  Data 

3. Rotor-Bearing System- Dynamic Model 

4. S t a b i l i t y  Analys is  

5.  Response C a l c u l a t i o n s  

I11 MECHANICAL DESIGN 

Bear ing  Tes t  Rig Design 

Assembly and Alignment 

Force Gages 

Ben t ly  Gages 

Contact  P o s i t i o n  Ser,sors 

Tes t  Rig I n s t a l l a t i o n  

ProcuremeEt S ta t x  

I V  INS TRUMERTATION AND IViEASLiREY23NT3 

V TESTING SUB-TASES 

S h a f t  Displace-ent Gage Evalv.ation 

Ben t ly  Gage CheckclAt Test Rig 

E f f e c t s  o f  S h a f t  Inhomger i e i t i e s  

Force Gage Eva lza t io?  

Loader 3,eai-irg Fri : t ior!  ;crque m 

PAGE 

V i i  

iX 

X 

10 

11 

13 

15 

15 

17 

20 

20 

2 1  

22 

23 

24 

31 

31 

35 

36 

40 

42 



TABLE OF CONTENTS - Continued 

FAGE 

REFERENCES 

TABLES 

FIGURES 

A. PPEND IXES 

4 3  

45 

46 

83 



LIST OF TABLES 

Table No. 

1 Summary o f  Bearing Var iab le  Test  Range 

Page N o .  

45 

- iv- 



LIST OF ILLUSTRATIONS 

Figure 

1 

2 

3 

4 

5 
6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

TITLE 

Program Schedule 

Two-Axial Groove Cylindrical Bearing 

Clearance Ratio Between Potassium and Water 
Lubricated Bearings for Equal Taylor Numbers 

Elliptical Path 

Rotor Bearing - Pedestal System 

Test Rig Assembly Drawing 

Bearing Stability Test Rig 

Alignment Scheme Using Proficorder 

Force Gauge Detail 

Bently Gauge Holder Assembly 

Instrumentation Schematic of Jmrnal Bearing 
Test Rig 

Support Structure for Test Rig 

Schematic of Shaft Displacement and Force 
Gage Instrumentation Requirements 

Block Diagram - Shaf t  Displacement 
Instrumentation 

Eccenters for Dynamic Load Application 
(Zero Unbalance Shown) 

Eccenter Unbalance Ratio at Different Angular 
Settings 

Page No. 

46 

47 

48 

49 

50  

5 1  

52 

53  

5 4  

55 

56 

57 

58 

59 

60  

6 1  

Angular Location of Eccenter Center of Gravity 62 
at Different Angular Settings 

Force Vector Diagram, Dynamic Loading 6 3  

Block Diagram - Rotor Force Instrumentation 64  



LIST OF ILLUSTRATIONS 

Figure 

20 

21 

22 

23 

2 4 

25 
26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

TITLE 

Torque Measurement Instrumentation 

Torque Readout System Calibration 

Gage Zero Shift with Speed 

Proximity Gage Calibration Curve for 
Various Media 

Proximity Probe Calibration Curve,  Frobe Tip 
is Shielded with a Teflon Cap 

Gauge Check-out Test Rig 

Calibration Test Device 

Maximum Variation in Bently Probe Calibration 
Over the Circumference of a 420 S.S. Shaft 
Because of Non-Homogeneities in the Shaft 
Materia 1 

View of Grinder Used in Shaft Runout Measure- 
men t s 

Try.e and Apparent S h a f t  Runout Type 420 S.S. 
Shaft 1.25" Diameter 

True and Apparent S h a f t  Runout Type 420 S . S .  
Shaft 1.25" Diameter with Silver Plate 0.010" 
Thick 

Maximum Variation in Bent ly Probe Calibration 
m e r  cne circumference OY a $26 S.S. S i ~ d i ' ~  
Overlaid with 0.005 Inch Silver Plate Because 
Of Non-homogeneities in the Plating 

Comparison of Shaft Runout Measurements 

Comparison of Shaft Runout Measurements 

Comparison of Shaft Runout Measurements 
Using Bently and Capacitance Probes 

Force Check-out Gauge 

Force Gauge Calibration Curve 

Test Rig for Measuring Loader Bearing 
Friction Torque 

Page No. 

65 

66 

67 

68  

69 

70 

7 1  

72 

73 

7 4  

75 

76 

77 

78 

79 

80 

8 1  

82 

-vi- 



ABSTRACT 

The Space Power and Propulsion Section, in cooperation 

with the Research and Development Center of the General Electric 

Company, has been under contract since April 29, 1965 to the 

National Aeronautics and Space Adminstration for the design, 

fabrication, and testing of journal bearings which possess 

characteristics required for use in space power systems. 

Requirements include long term unattended operation under 

zero "g" conditions using low viscosity lubricants such as 

potassium at 1200'F. 

The program represents a continuation of work carried out 
under contract NAS 3-2111 (18) , and involves the testing and 

evaluation of  bearings under conditions of angular and trans- 

verse linear misalignment, and non-rigid bearing supports. The 

4 pad pivot-pad and the 3-lobed journal bearings shall be tested 

after the bearing test assenbly including instrumentation have 

demonstrated the ability t o  o5tain the required data. 

The program will be a continuation of experimental ir- 

vestigations paralleled by analytical studies. These analytical 

investigations will compare the physical testing of bearing 

parameters with results based on theoretical assumptions. The 

goal of such experiments is to generalize the various bearing 

parameters thereby extending the usefulness of the results as 



design tools. The experimental tool of this program is a 

high speed test assembly comprised of a rotor and two test 

bearings which permits interchangeability of bearings and rotor. 

The lubricant will be distilled water, temperature-controlled 

to simulate the kinematic viscosity of potassium. The stability 

behavior of the rotating shaft will be measured with non-contacting 

Bently inductance gages. (Appendix B). 

The specific requirements of the system 

1. Shaft speed 

2. Inlet lubricant temperature 

3. Inlet lubricant supply pressure 

4. Bearing linear misalignment 

5. Bearing angular misalignment 

0 .  Bearing LID ratio r 

7. Diametral clearance 

are: 

3600 to 30,000 rpm 

70 to 150'F 

0 to 150 psia 

0 to 0.004 0.0005 

0 to 400 & 12 see. 

1 

0.005 in. 

The program will be performed in two tasks, the first of 

which will be the modification of the existing bearing test 

assembly and instrumentation and a demonstration of the ability 

to obtain accurate data. Task I1 will involve testing and analysis 

of the 4 pad pivot-pad and 3-lobed bearings. 

The present report covers progress during the quarter ending 

July 29, 1965. 

-vi i i -  



SUMMARY 

During t h i s  f i r s t  q u a r t e r ,  t e s t  assembly des ign  requi rements  
i 
I 

i 
i 
i 
i 

\ 

I 

I 

I 

I 
I 

L 

I 

I 

and t h e  program o b j e c t i v e s  were de f ined .  S e v e r a l  meet ings were 

h e l d  between SPPS, R&DC and NASA p e r s o n n e l .  

The a v a i l a b l e  t e s t  assembly which was used  on t h e  p rev ious  

program (C0ntrac.t  N A S  3-2111) has been modi f ied  t o  pe rmi t  dynamic 

c a l i b r a t i o n  of t h e  Bent ly  inductance  t y p e  proximi ty  probes i n  a 

wa te r  envix>onment. A t e s t  s h a f t  i s  suppor t ed  on t w o  7207 c l a s s  

5 p re loaded  a n g u l a r  c o n t a c t  ball b e a r i n g s ,  l u b r i c a t e d  wi th  s p i n d l e  

o i l .  The Ben t ly  probes must demonstrate  an  accuracy of 2 50 

micro-inches and a zero  s h i f t  w i th in  25 micro- inches to f u l f i l l  

c o n t r a c t  r equ i r emen t s .  Bench t e s t i n g  o f  t h e  Ben t ly  probes to 

improve t h e i r  accuracy i s  p r e s e n t l y  underway. I n  a d d i t i o n ,  t h e  

t e s t i n g  and moni tor ing  equipment i s  b e i n g  s e t  up. 

The h igh  speed t e s t  r i g  which w i l l  be  procured for the  

ensu ing  t e s t  program has  been designed, and t h e  manufactur ing 

d . r ? . v i ~ m s  0 -  h ? ~ 7 ~  heen cnmpl e t e d  - Ins t rumen ta t ion  and measurement 

equipment has  been d e f i n e d  and assemblage of t h i s  equipment has  

begun. In  p a r a l l e l  w i t h  t h e  above mechanical  des ign  and t e s t i n g  

e f f o r t ,  a n a l y s i s  of t h e  fundamental r o t o r - b e a r i n g  system dynamics 

has  begun. 

The program schedule  i s  shown i n  F igu re  1. 

- ix- 



Forecas t  

During the  nex t  q u a r t e r ,  ending November 30, 1965, p ro -  

curement of t h e  hardware f o r  the  fo l low up t e s t s  a long  w i t h  

t h e  t e s t  r i g  mounting s t r u c t u r e  and tempera ture  c o n t r o l  equip-  

ment w i l l  be exped i t ed  (Reference F igu res  6 and 1 2 ) .  

p re l imina ry  component t e s t i n g  will be undertaken i n  p r e p a r a t i o n  

f o r  assembly i n t o  t h e  ensuing  test u n i t .  

component t e s t s  i nc lude  i t ems  such a s  to rque  c a l i b r a t i o n ,  f o r c e  

b u t t o n  c a l i b r a t i o n ,  c a l i b r a t i o n  of t h e  Bent ly  probes  and check 

out  of a l l  moni tor ing  equipment,  

Also, 

These p re l imina ry  

-u- 



I. INTRODUCTION 

For long duration space power missions, a prime requisite 

is substantial on-board electric power. In the period 1970 - 

1975, for example, the National Aeronautics and Space Adminis- 

tration anticipates that power requirements may range from 1 

to 10 kilowatts for extended duration. ('1 Energy conversion 

methods have therefore been under intensive study. 

A large background of knowledge exists in the conversion 

of available energy to electrical power through Rankine and 

Brayton thermodynamic cycles using rotating machinery. Dynamic 

conversion machines therefore are strong candidates for space 

power systems to convert solar or nuclear heat energy to 

electrical power. 

To support the rotating shafts of conventional machinery, 

the designer must select between fluid-film (slidiRg) and rolling 

element bearings. When long-life is critical, such as for the 

steam turbines of central power generating stations, fluid-film 

bearings are the universal choice. 

Well designed fluid-film bearings separate surfaces in 

relative motion by a thin fluid film, avoiding metal to netal 

contact and the consequent wear. Such bearings have permitted 

continuous operation of  equipment for over 25 years with no 



b e a r i n g  w e a r ( * ) .  

f o r  suppor t ing  t h e  r o t a t i n g  components i n  space-power systems.  

F l u i d - f i l m  bea r ings  a r e  t h e r e f o r e  a l o g i c a l  cho ice  

S e v e r a l  p o t e n t i a l  advantages e x i s t  i f  t h e  thermodynamic c y c l e  

f l u i d  u s e d m  t h e  space-power system a l s o  l u b r i c a t e s  t h e  f l u i d -  

f i l m  b e a r i n g s .  The s e a l i n g  problem between l u b r i c a n t  and 

thermodynamic f l u i d  i s  e l imina ted ;  b e a r i n g  spans  may be reduced,  

reducing  weight and r a i s i n g  t h e  c r i t i c a l  speed;  t h e  a l lowab le  

o p e r a t i n g  tempera ture  i s  h ighe r  t han  w i t h  conven t iona l  l u b r i c a n t s ,  

hence tempera ture  g r a d i e n t s  and c o o l i n g  requi rements  a r e  improved, 

and t h e  complexity of t h e  l u b r i c a t i n g  s y s t e m  i s  g r e a t l y  reduced .  

The use o f  t h e  thermodynamic c y c l e  f l u i d  however i s  n o t  

wi thou t  p o t e n t i a l  problem a r e a s ,  One o f  t h e s e  a r i s e s  from t h e  

low v i s c o s i t y  c a n d i d a t e  thermodynamic f l u i d s ,  such a s  potassium 

and sodium, and t h e  high speeds o f  t h e  i -o ta t ing  machinery. It 

can be a n t i c i p a t e d  t h a t  such bea r ings  w i l l  be  o p e r a t i n g  w e l l  

i n t o  t h e  t u r b u l e n t  f l u id - f ’ i lm  regime. The s h a f t  speeds o f  space-  

power systems a r e  comparable t o  t h o s e  of conven t iona l ly  l u b r i c a t e d  

h i g h  speed machinery which borders  on t u r b u l e n t  b e a r i n g  o p e r a t i o n .  

Owing t o  t h e  much lower v i s c o s i t y  o f  t h e  space-power system 

l u b r i c a n t s ,  however, the  t r a n s i s t i o n  speed t o  t u r b u l e n t  b e a r i n g  

o p e r a t i o n  i s  about  30 t imes  lower than  comparable c o n v e n t i o n a l l y  

l u b r i c a t e d  machinery ( 3 )  . 

I n  t h e  laminar  f l o w  regime, t h e o r e t i c a l  s o l u t i o n s  of p l a i n  

b e a r i n g  performance have been we l l  v e r i f i e d  by experiments .  A 

comple t e ly  t h e o r e t i c a l  approach to t u r b u l e n c e ,  however, i s  

- 2- 



prevented by the fact that the number of variables exceeds 

the number of equations. Therefore, the analysis of bearings 

in turbulent flow must depend on accurate experimental in- 

inf~rmation(~). Quantitative calculation procedures for 

turbulent bearing performance have only recently begun to 

emerge(5)j (6), ( 7 ) ~  (8). Much remains to be done before 

turbulent fluid-film bearing performance calculations become 

well-established. 

Other potential problem areas exist for fluid-film bearings 

apart from the uncertainty of performance under turbulent 

conditions. Experience has demonstrated that lightly-loaded, 

high speed journal bearings can permit a shaft whirling or 

instability which can limit attainable r o t o r  speed or result 

in beai-ing daiiiage!g!’ !lo). Space vehicles nay be required to 

operate unattended for long periods of time in a zero-gravity 

environment, resulting in conditions conducive to shaft whirling. 

The stability of rotors supported on fluid-film bearings is 

therefore an additional area of concern for space-power systems. 

The General Electric Company has conducted under a previous 

contract, NAS 3-2111, an investigation of rotor-bearing system 

stability with the fluid-film bearings in turbulent flow. Six 

different self-acting fluid-film bearings were tested in a special 

variable speed test assembly to obtain a comparison of rotor 



stability and bearing power loss. The parameters which 

were varied included speed, lubricant viscosity, static and 

dynamic loads, bearing clearance and rotor mass distribution. 

A tabulation of the range of variables is shown in Table 1. 

Distilled water was chosen as the test fluid to simulate 

the low viscosity of potential thermodynamic working fluids 

(sodium and potassium) while permitting relative ease of 

observation of rotor-bearing performance. Tests were carried 

out with water temperature ranging from 70°F to 120°F, and no- 

load bearing radial clearances varying from approxinately 0.0005 

to 0.0025 inches. As indicated in Figures 2 and 3, the resulting 

bearing Sommerfeld and Taylor numbers for the water-lubricated 

tests were comparable to those of a potassium lubricated 

bearing between 800 and 1300 Or",  and with clearances between 

0.4 and 0.7 those of  the water tests. 

In the tests conducted under the previous program, neither 

t h e  t h r ~ ~ - - l n h ~  nnr +-.he ti l t ine:  I -  Dad bearing permitted the rotor 

to exhibit a potentially destructive fractional freqcency whirl. 

All test bearings, however, permitted synchronous shaft orbiting 

due t o  residual unbalance. The maximam speed attempted with 

the three-lobe and tilting pad bearings was 21,500 rpm, and was 

arbitrarily limited because of the amplitude of the synchronous 

shaft orbiting. 



The p r e s e n t  program cont inues  t h e  i n v e s t i g a t i o n  o f  t h e  

t i l t i n g  pad and t h r e e - l o b e  bea r ing  under a d d i t i o n a l  t e s t  

c o n d i t i o n s  such a s  v a r i a b l e ,  d e l i b e r a t e  b e a r i n g  misal ignment ,  

n o n - r i g i d  b e a r i n g  suppor t s  and c o n s t r a i n t s  on pad p i v o t i n g  

of t h e  t i l t i n g  pad b e a r i n g ,  The s h a f t  r e s i d u a l  unbalance w i l l  

be  reduced t o  a va lue  o f  0 . 1  gram i n c h  o r  lower t o  pe rmi t  h i g h e r  

r o t a t i o n a l  speeds t o  be i n v e s t i g a t e d .  

The behav io r  o f  a r o t o r  on f l u i d - f i l m  b e a r i n g s  i s  a complex 

system phenomenon; d i f f e r e n t  r o t o r s  on a g iven  s e t  o f  b e a r i n g s  

can be expec ted  t o  produce d i f f e r e n t  behav io r .  It i s  t h e r e f o r e  

impor tan t  to s e p a r a t e  t h e  bea r ing  component c h a r a c t e r i s t i c s  

f r o m  t h e  o v e r a l l  system behavior .  The bearirig c h a r a c t e r i s t i c s  

can then  be a p p l i e d  t o  r o t o r  c o n f i g u r a t i o n s  o t h e r  t h a n  t h e  

p a r t i c u l a r  one under t e s t .  To e s t a b l i s h  t h e s e  c h a r a c t e r i s t i c s ,  

measurements w i l l  be made of t h e  dynamic r a d i a l  f o r c e  t r a q s m i t t e d  

through t h e  b e a r i n g  a s  w e l l  a s  t h e  s h a f t  motion. The dynamic 

b e a r i n g  s p r i n g  and damping c o e f f i c i e n t s  w i l l  t hen  be computed 

f r o m  t h e s e  measurements. 

P r i o r  to t e s t s  on t h e  th ree - lobe  and t i l t i n g  pad b e a r i n g ,  

t h e  c a p a b i l i t i e s  of t h e  r e v i s e d  and improved t e s t  assembly w i l l  

be  demonst ra ted  us ing  t h e  two a x i a l  groove t e s t  b e a r i n g .  ?"ne 

r e p e a t a b i l i t y  of t e s t  d a t a  w i l l  be eva lua ted ,  a s  w e l l  a s  t h e  

a b i l i t y  of t h e  assembly t o  produce c o n t r o l l e d  misal ignment .  When 

a s a t i s f a c t o r y  l e v e l  of performance h a s  been demonstrated,  t e s t s  

w i l l  be commenced on t h e  th ree - lobe  and t i l t i n g  pad b e a r i n g  types .  

-5- 



11. Rotor-Bearing System Dynamic Analysis I 
1. Purpose of Analysis 

The dynamic behavior of a rotor supported on fluid-film bearings is a 

complex system phenomenon. The response of a system to a disturbance depends 

upon the characteristics of the individual components of the system (bearings, 

rotor, foundation) and the interaction between them. Thus, the rotor response to 

unbalance depends upon its mass, elasticity, mass distribution and the restoring 

force and damping in the fluid-film bearings. Analysis shows that the bearing 

spring and damping characteristics in turn are highly complex, dependent upon 

shaft speed, bearing geometry and clearances, lubricant properties, the magnitude 

of steady and dynamic loads (11,12). 

Not only is the rotor response to finite unbalance loads dependent upon 

the bearing dynamic coefficients, but the stability of a well-balanced rotor 

against fractional-frequency whirl also depends on these coefficients (12). 

The dynamic bearing properties may be calculated for a given bearing by making 

simplifying assumptions, i.e., assuming zero tangential velocity of the shaft 

center and linearizing the spring and damping forces about a steady-state 

position. When the bearings are operating in the turbulent flow regime, a 

further uncertainty exists owing to the semi-empirical approach necessary in 

turbulent analysis. 

Some information exists comparing the calculated and measured response 

of an unbalanced rotor based on linearized theoretical bearing dynamic 

coefficients (14, 15, 16). No values of dynamic bearing coefficients based 

on direct measured force and displacement values, however, are reported in 

the literature for comparison with theoretical values. Such information can 

be of great value in generalizing test results so that the behavior of other 

rotor systems may be predicted, including both stability and response to 

-. Unbalance forces. moreover, ilie prseent program is i n t e ~ d e d  t o  study the 

-6- 



effect of bearing misalignment; experimental dynamic bearing coefficients 

will allow quantitative comparison of aligned and misaligned bearing character- 

istics for dynamic as well as static conditions. 

A mathematical model of a rotor-bearing-foundation system has been assumed 

so as to sirnillate the bearing test assembly. The equations describing this 

system have been programmed for computer solution. The program may be used 

in three different ways: 

1. To calculate from experimental data the dynamic bearing spring and 

damping coefficients producing the observed test rotor response at 

a particular operating condition. 

2 .  To predict the response (including vibration amplitude) of an 

arbitrary rotor-bearing-foundation system to unbalance load given 

either theoretical or experimental dynamic bearing coefficients. 

3.  To predict the stability threshold of the test rotor, or an 

arbitrary rotor, given the dynamic bearing coefficients. 

Thus, the basic purpose of the analysis is to permit the bearing dynamic 

characteristics to be determined from the observed overall system behavior, 

~hus providing Lt=sui i s  "1 gec ,ez~l  ~ ~ ~ f i ~ I ~ ~ ~ ~ .  n t k r  F m y c t a n t  ?iirposes are 

to provide a tool for guiding the experiments, and to check the validity of 

linearized bearing coefficients in establishing the response and stability 

behavior of the test and other rotor configurations. 

2. Determination of Bearing Characteristics from Experimental Data 

It is assumed that the bearing fluid film characteristics can be described 

by the first order Taylor expansion of the bearing force. change with respect to 

-7 - 



s h a f t  c e n t e r  displacement change and v e l o c i t y  (11). Thus, t he  e i g h t  parameter 

mDdel of b e a r i n g  f i l m  i s  c h a r a c t e r i z e d  by t h e  fol lowing equat ions:  

-F = K X + CxxX + K  y 4- C y 
X xx XY XY 

-F = K X + C  X + K  y + C  y 
Y YX YX YY YY 

where F ' s  are  dynamic f i l m  fo rces  and (xy) are j o u r n a l  disp,acements , A t h  

respect t o  bea r ings )  from an i n i t i a l  s t e a d y - s t a t e  p o s i t i o n  produced by a s t e a d y ,  

u n i d i r e c t i o n a l  load.  Thus i n  Figure 3 ,  p o i n t  0 r e p r e s e n t s  t he  s t e a d y - s t a t e  

p o s i t i o n  of t he  s h a f t  a x i s  w i th  no unbalance load. The x and y d i r e c t i o n s  

are any a r b i t r a r y  coord ina te  axes i n t e r s e c t i n g  a t  pDint 0 .  For convenience, 

however, one of the axes may be taken as  p a r a l l e l  t o  t he  s t eady  a p p l i e d  load 

d i r e c t i o n .  

With such a model, t he  s t e a d y - s t a t e  dynamic response of the r o t o r - b e a r i n g  

system i s  harmonic i n  na tu re .  I n  the general  ca se ,  under an unbalance load 

t h e  locus  of t he  s h a f t  c e n t e r  i n  the  bear ings i s  an  e l l i p s e ,  as shown i n  

Figure 4 .  The major a x i s  of the e l l i p s e  i s  a t  an angle  wi th  r e s p e c t  t o  the  

coord ina te  axes.  

With an e l l i p t i c a l  s h a f t  o r b i t ,  the displacement and fo rce  i n  the  two 

r ~ c c d ! . ~ ~ ~ ~ ~  l i y o r t i n n s  m a y  be  w r i t t e n  as: 

x = x cos ut + x sin w t  y - yc cos ut + y s in  w t  
C 8 8 - F cos w t  4- F s i n  w t  F - F cos w t  + F sin w t  

Fx xc x s  Y YC Y9 

The more c o m p a c t  and convenient  form i s :  

- i w t  - Lwt  - f w t  
' F Y -  F e  Y x - X e  - ildt , y - Y e  , F x - F e  ..x 

- F  + 1 F  
xc pY yc YA 

FX = F + i Fxs , Where x - xc + ixs , Y = P, + i Y s '  

The q u a n t i t y  w i s  the  s h a f t  r o t a t i o n a l  frequency f o r  a dynamic load caused by 

unbalance.  

"(Nomenclature i n  Appendix A) 
-8 - 



The e l l i p t i c a l  s h a f t  o r b i t  may be w r i t t e n  simply u s i n g  the coord ina te  

axes ( x ' , y ' )  co inc id ing  w i t h  t h e  major and minor axes of t h e  e l l i p s e ,  as shown 

i n  F igu re  5. Thus, 

I 

x ' ( t )  = a cos (ut-d)  

y ' ( t )  = b s i n  ( w t - d )  

R e f e r r i n g  t o  the  coord ina te  system x,y a t  an  ang le  a wi th  r e s p e c t  to x ' , y l 5  

x 1  = x cos a + y cos a 

y '  = y cos a - x s i n  a 

and 
I 

t 

_I_ 

x = -, /x x * cos(wt-dx) \ c  S 

sin(w t -d ) 
Y =v- Y 

This  e s t a b l i s h e s  the  r e l a t i o n s h i p  between (a,  b ,  d ,  a) and (xc, xs, yc ,  y,). 

The e i g h t  parameter model of t he  f l u i d - f i l m  f o r c e  may a l s o  be expressed 
, 

i n  dimensionless  terms and i n  complex qo ta t ion  as: 

where ii * i7 - i Elxy etc. 
X Y  

- - 
e t c .  

C C -K cxx = ii cxx 
1 = - F  

X ' Y  W X B Y B  Kxx w x x '  

The f a c t o r s  C and W have dimensions, length and f o r c e ,  r e s p e c t i v e l y .  A common 

p r a c t i c e  i s  t o  use the  bea r ing  clearance f o r  C and the  bea r ing  load f o r  W. 

-9- 



d e s c r i b e  t h e  change of fo rce  wi th  r e spec t  t o  displacement and v e l o c i t y  i n  the 

two coordinate  d i r e c t i o n s .  Measurement of  f o r c e s  and displacements  i n  t he  two 

I coord ina te  d i r e c t i o n s ,  however, y i e l d  only fou r  values  a t  one bea r ing ,  Two 

independent se ts  of measurements a r e  r equ i r ed ,  which cannot be s a t i s f i e d  by two 

i s  t o  apply a given unbalance both symmetrically and an t i - symmet r i ca l ly .  The 

former tends t o  produce a t r a n s l a t o r y  w h i r l ,  i n  which the  s h a f t  a x i s  d e s c r i b e s  

a c y l i n d e r ,  The l a t t e r  (unsymmetric) unbalance produces a c o n i c a l  w h i r l ,  i n  

which the s h a f t  a x i s  locus desc r ibes  a double cone. 

I 

I 

I - -  - - - -  - 
I Denoting these  independent s e t s  by (?i 1’ Y1’ Fxl’ Fyl) and (X2Y Y2’  Fx2’ Fy2> Y 

then I 
I 

I 

- El + BUl = - Fxl 

- 
CX1 + DYl = - F 

Y l  

- 
CX2 + DT2 = - F 

Y 2  
- -  - 

One determines A ,  B ,  e t c .  

A computer program i s  c u r r e n t l y  being w r i t t e n  t o  c a l c u l a t e  the e i g h t  bea r ing  

from Equation (2) and then x e t c .  a r e  v b i a i ~ e d .  xx’ cxx 

parameters  from inpu t  experimental  data on fo rces  and displacements  

3 .  Rotor-Bearing System Dynamic Model 

F igu re  4 shows the ro to r -bea r ing -pedes t a l  system. A f l e x i b l e  s h a f t  i s  

s u p p o r t e d  on f l u i d - f i l m  bearings possessing s t i f f n e s s  and damping. The bear ing 

housing a l s o  possess  mass and e l a s t i c  support .  The symmetric r o t o r  has two 

c o n c e n t r a t e d  masses,  each wi th  one-half t he  t o t a l  mass and i n  a d i s t a n c e  such 

-10- 



t h a t  the moment of mass i n e r t i a  about t h e  mass c e n t e r  i s  equa l  t o  the  t r a n s v e r s e  

moment of i n e r t i a  of the r o t o r ,  t h a t  i s ,  

(1/2)ME2b2 = IT 

A t  t he  equa l  d i s t a n c e s  from the mass c e n t e r ,  e x t e r n a l  f o r c e s  a r e  app l i ed .  

magnitude and d i r e c t i o n  may be d i f f e r e n t .  

v e c t o r  form, 

The 

The equa t ions  of motion a r e ,  i n  

.. 
ME2 + lG2- F2 - 0 

j = 1 , 2  ,....... 6 

r - 1 , 2  

The Inf luence  c o e f f i c i e n t s  represents  d e f l e c t i o n  a t  a due to u n i t  f o r c e  a t  b. The 

e x t e r n a l  f o r c e s  a r e  denoted by Q's. 

a b  

The f i l m  forces  F's a r e :  

( i j - i l  

-Fx2 Kxx(X4-X2) + C x x ( i 4 - X 2 )  + Kxy(Y4-Y2) -+ cxy(?4- i2>  

-F K (X - X  ) + C ( X 3 - x l )  + K (y,-y,)  + . c  ( y  - y , >  

= Kxx(X3-XI) f C (x3-x l )  -k K ( Y j - Y , )  f c 
-F*l xx X Y  *Y  

yx YY YY 3 . .  Y1 y x 3 1  
- X  ) + K ( y  - y Z )  + C ( i  -Y 

-F Y2 Kyx(x4-x2) + CYx(x4  2 Y Y  4 YY 4 2 

-11- 



Ttie s u b e c r i p t s  are s t a t i o n  numbers 88 shown i n  Figure a. The uee of aynmetry reducca 

Equat ions (3) to:  
.. 

D1Edi0 + io - ii 8 -"2ijR 

M i o  - PR a QR (44) 

+ kk, - P, = 0 

.. - 

L' 

l d lb  

51 + a52  ?3 q55"156, a4 cx51qf52  
'ry '= ;r 

al a55+ "56 f 2 Where 

Since  e q u a t i o n s  ( 4 A )  can be obta ined  from (4B) by r ep lax ing  a3,  a4, 5 ,  7, and 

u1, q 2 ,  1, 1, and Q 

by 

r e s p e c t i v e l y ,  one only needs t o  s o l v e  equa t ions  (4B). R 

4 . S t o b i l i t y  a n a l y s i s  

The c o n d i t i o n  a t  t t i reshold  o f  i n s t a b l l l t y  can  be found by t a k i n g  homogeneous equa- 

- i v t  . 'Ilie e l imina t ion  o f  i? and and t h e  vanletring 
0 b' 

t i o n e  of (4B) and l e t t i n g  R ( t )  = fie 

de te rminan t  of s c a l e r  equat ions  g i v e s  ( i n  dlmensfonlesfi  q u a n t i t i e s )  

-12- 



1 

5 

yx xy ii. 7: + E  2 - E  2 - r :  2 xx yy xx yy x y  yx k =  - - 
+ c  

cxx Y Y  

4.) (k 4) - i ii 
(zxx xy yx 

%* - 

i / i  

1 - 7 S S n  2 2  2 %I  

tg T 2 S 2  

2 2  R =  
1 - y s  8 

V s =o 
Ll 

Where: Y ; 
ns 

kr 3M 
s2 I - 1 

3 

2 

n s  
I -  

7 M  n m 

- - c .  c 0 -  
- c  C k ck P - K  

Kxx w X %  xx w UCxx e t c  

me q u a n t i t y  jw i s  the r o t a t i n g  speed e t  the th re sho ld  of i n s t a b i l i t y .  Equations (5A-B) 

g i v e  va lue8  of k and y and then  ( 5 C - E )  determines t h e  v a l u e  of S a t  t h e  thl-pshold o f  

i n s t a b i l i t y .  

Pcsponae Calcu l .a t fons  

For t h e  response  t o  x(t) - , s o l u t i o n  takes  the f o i m  k ( t )  = ke and 

Equat ions (4B) can  be eolved by e l imina t ion .  The r e s u l t s  are: 

- i w t  
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1 1 - v  = 
O 1 - s  * c F. vs + G 4 Q V  3 

For tlic unbolonccs,  
2 - i mo6,w 2 

QX1 m 0 0  b w Qy 1 

Qx 2 
2 - m t ,  w 2 ( - s i n  p + i c o s  'p) Qy2 1 1 - m l f , l w  (COY 'p + L tl ln 'p) 

v5ere 9 and are unbalance m a s s e e ,  and 5 1' are unbalancc ecccantrfcity nntl l n  

the phase l a g  o f  rn f r o m m  . 
0 >O 

1 0 

- - 
0 'V - i o ,  
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111. MECHANICAL DESIGN 

During t h i s  q u a r t e r ,  s e v e r a l  mechanical  dgsign m o d i f i c a t i o n s  

t o  t h e  p r e v i o u s l y  used t e s t  r i g  were cons idered  for t h e  j o u r n a l  

b e a r i n g  t e s t  r i g  assembly. 

and d e t a i l  manufactur ing drawings of i t s  components a r e  e s s e n t i a l l y  

complete.  I n  a d d i t i o n ,  manufactur ing drawings r e q u i r e d  t o  conve r t  

t h e  t e s t  r i g  used on t h e  prev ious  program (NASA Con t rac t  NAS 3-2111) 

t o  a r i g  f o r  t h e  development and p r o o f  t e s t i n g  o f  Ben t ly  gages 

were completed.  The r e s u l t i n g  shop work i s  p r e s e n t l y  underway. 

The s e l e c t e d  des ign  was f i n a l i z e d ,  

Bear ing  Tes t  R i g  Design 

I n  t h e  e v o l u t i o n  o f  t h e  t e s t  r i g  des ign ,  s e v e r a l  a r r a n g e m n t s  

were cons ide red ,  based upon t h e  fo l lowing  g e n e r a l  requi rements :  

1. 

2. 

3. 

4. 

A d j u s t a b i l i t y  for o b t a i n i n g  c o n t r o l l e d  a n g u l a r  and 

t r a n s v e r s e  misalignment between t e s t  b e a r i n g s  wi thout  

m a j o r  disassembly of t h e  t e s t  r i g .  

A b i l i t y  t o  c o n t r o l  and vary  t h e  f l e x i b i l i t y  of t h e  

t e s t  b e a r i n g  mounts, and t o  measure b e a r i n g  r e a c t i o n  

f o r c e s  . 

Provide an a c c u r a t e  means for checking b e a r i n g  a l i g r m e n t .  

A b i l i t y  t o  e s t ab l i sh  gage-zero r ead ings  and c a l i b r a t i o n  

of s h a f t  p roximi ty  gages a f t e r  t e s t  r i g  a s s e n b l y ,  and 

between t e s t s .  



5. Make use  of e x i s t i n g  t e s t  r i g  hardware where p o s s i b l e  

by modifying p a r t s ,  and ma iq ta in  s i m p l i c i t y  of assembly. 

One des ign  approach f o r  o b t a i n i n g  misal ignment  employed 

t h e  use  o f  e c c e n t r i c  r a b b e t s  between t h e  main hous ing  and t h e  

l o w e r  t e s t  b e a r i n g  assembly f o r  t r a n s v e r s e  misal ignment ,  agd 

wedge-shaped s p a c e r s  between f lafiges f o r  a n g u l a r  misa l ignnent  . 
T h i s  c o n f i g u r a t i o n  r e q u i r e d  some disassembly of t h e  t e s t  r i g  f o r  

ad jus tment ,  and was t h e r e f o r e  r e j e c t e d .  An a l t e r n a t e  des ign  

invo lved  mounting t h e  t e s t  bea r ings  i n  s p i n d l e  a s sembl i e s ,  which 

i n  t u r n  were mounted i n  t h e  upper and lower f l a n g e s  o f  t h e  t e s t  

r i g ,  and a t  r i g h t  a n g l e s  to each o t h e r .  Because of d i f f i c u l t y  

i n  o b t a i n i n g  a l ignment ,  t h i s  was a l s o  r e j e c t e d .  

F i g u r e  6 shows t h e  assembly drawing o f  t h e  adop5ed desigr,.  

A p i c t o r i a l  view of t h e  t e s t  r i g  i s  d e p i c t e d  i n  F igu re  7. The 

upper  t e s t  b e a r i n g  i s  mounted c e n t r a l l y  i n  t h e  t e s t  r i g  b y  

r a b b e t e d  f l a n g e s .  The lower bea r ing  housing sukassembly can be 

GI - 2 L 1 - - - -  C/IICL ar iEj l lLu - ' * - - - - A  VI -= m : - ~ l i r n n ~ d  . u ~ ~ ~ ~ ~ ~ . - -  -. 1~r j f . h  h h p  f i x e d  upper b e a r i n g  Ir;g 

use  o f  f o u r  a d j u s t a b l e  clamps. T h i s  t echnique  a l lows  t h e  upper 

b e a r i n g  to be i n s t a l l e d  i n  t h e  housing w i t h  i t s  c e n t e r l i n e  con- 

s i d e r e d  a s  the datum o r  zero p o s i t i o n .  The lower b e a r i n g  w i l l  

t h e n  b e  assembled and a l i g n e d  with i t .  Misalignment of t h e  lower 

b e a r i n g  i s  accomplished by c o n t r o l l i n g  t h e  ad jus tment  screws o f  

t h e  ad jus tment  r i n g  assembly. The b e a r i n g  c e n t e r  d i s t a n z e  i s  12.5 



i nches ,  and t h e  t e s t  s h a f t  i s  dr iven  by a v a r i a b l e  speed  e l e c t r i c  

motor through a q u i l l  s h a f t  assembly. This  d r i v e  i s  i d e n t i c a l  

t o  t h a t  used during t h e  p rev ious  program (Con t rac t  NAS 3-2111). 

Rad ia l  s i d e  loads  a r e  imposed on t h e  t e s t  s h a f t  by t h e  same pad 

l o a d e r  b e a r i n g s  which were employed p r e v i o u s l y .  The s h a f t  w i l l  

be  i n i t i a l l y  ba lanced ,  and then  purpose ly  unSalanced i n  c o n t r o l l e d  

amounts dur ing  t e s t  by ba lance  d i sks  l o c a t e d  on i t s  ends .  

Assembly and Alignment 

The m a j o r  problem i n  t h e  t e s t  r i g  assembly w i l l  be t o  o b t a i n  

very a c c u r a t e  i n i t i a l  a l ignment  o f  t h e  b e a r i n g s ,  and r e l i a b l e  

v e r i f i c a t i o n  of t h e i r  a l ignment .  This  must be g o t t e n  du r ing  

assembly, and r e q u i r e s  s p e c i a l  techri iques.  A twofold approach 

for i n i t i a l  a l ignment  has  been i n v e s t i g a t e d  and pursued i n  des ign .  

One i n v o l v e s  t h e  use  of precision-made, expandable dummy s h a f t s  

to a c c u r a t e l y  ex tend  t h e  c e n t e r l i n e  of t h e  upper t e s t  b e a r i n g  

through t h e  housing o f  t h e  lower, to al low t h e  second b e a r i n g  to 

be a l i g n e d  w i t h  i t .  An a d d i t i o n a l  approach u s e s  t h e  P r o f i c o r d e r  

a v a i l a b l e  a t  R&DC t o  en tend  a r o t a b l e  s h a f t  through bo th  test 

b e a r i n g s  and o b t a i n  t h e i r  alignment w i t h  it t o  a h igh  degree of 

p r e c i s i o n .  T h i s  b a s i c  technique i s  used i n  a l i g n i n g  t h e  NASA gas  

b e a r i n g  t e s t  r i g s .  

I n i t i a l  b e a r i n g  al ignment  w i l l  be ob ta ined  by i n s t a l l i n g  an 

expandable  dummy s h a f t  while  assembling t h e  t e s t  r i g .  A f t e r  
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o b t a i n i n g  i t s  b e s t  a l ignment ,  t he  r i g  w i l l  be mounted on t h e  

P r o f i c o r d e r  f o r  f i n a l  a l ignment .  Tl?e dummy s h a f t s  w i l l  a l s o  be 

used. f o r  i n t e r i m  al ignment  checks du r ing  t e s t i n g  t o  min in i ze  t h e  

need f o r  n e a r l y  complete disassembly and removal of t h e  t e s t  

r i g  from t h e  t e s t  i n s t a l l a t i o n ,  a s  r e q u i r e d  f o r  use  of t h e  P r o f i -  

c o r d e r .  I n  a l i g n i n g  t h e  b e a r i n g s  w i t h  t h e  dummy s h a f t ,  t h e  Bent ly  

proximi ty  gages themselves  w i l l  be employed as  a l i g n n e n t  tools. 

The lower housing assembly w i l l  be set up on t h e  P r o f i c o r d e r  w i th  

a s h o r t  s t u b  s h a f t  i n s e r t e d  a long  t h e  c e n t e r l i n e  to s i m u l a t e  t h e  

a c t u a l  t e s t  s h a f t .  The gages w i l l  be i n s t a l l e d  and r e a d i n g s  wi th  

t h i s " z e r o "  a l i g n e d  c o n d i t i o n  w i l l  be t aken .  The t e s t  r i g  w i l l  

t h e n  be assembled w i t h  t h e  expandable dummy s h a f t  mounted tkmugh  

t h i s  b e a r i n g .  The a d j u s t a b l e  bea r ing  w i l l  be  then moved s o  a s  

t o  r e p e a t  t h e s e  zero  r e a d i n g s  on t h e  Ben t ly  gages ,  cor responding  

to t h e  proper  a l i g n e d  c o n d i t i o n .  T h i s  a l ignment  accuracy us ing  

t h e  dummy s h a f t  i s  e s t i m a t e d  t o  be about  2 200 micro- icches .  

0 

$eflzitizn 2f' t r i i ~  hearins a x i s  + 10 micro- inches 

c o n c e n t r i c i t y  o f  ends of alignmerit a r b o r  2 l G 0  micro- inches 

+ 30 micro-inches 

2 50 micro-inckles 

s t a t i s t i c a l  e r r o r  i n  gage r ead ing  - 

e r r o r  i n  s e t t i n g - u p  and checking 8 gages 

O f  t h e  i n t e n d e d  0.004 inch t r a n s v e r s e  misa l igrment ,  t h i s  200 

micro- inch  comprises 5% of t h e  t o t a l  misal ignment .  

compared w i t h  t h e  l o s s  of r a d i a l  c l e a r a n c e  at t h e  b e a r i n g  ends 

I n  a d d i t i o ? ,  
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caused by the 400 seconds-of -arc intentional misalignment (which 
is 0.001188 in.) this 200 micro-inch transverse alignment in- 

accuracy comprises 0.84% of the total required angular misalignment. 

Following initial alignment, the entire test rig will be set 

up on the Proficorder shown schematically in Figure 8. This is 

a precisiorl measuring dcvice c0ntaiRin.g a circular tracing spindle 

with a surface sensing probe capable of tracing circular paths 

with deviations less than 3 micro-inches from perfect roundness. 

The work is mounted on a horizontal table which can travel 

vertically. 

ment can be obtained f rom the console accompanying the sensing 

Read-out and/or plotted charts of the bearing align- 

mechanism. 

In aligning the test rig, the rotable shaft with a longitudi- 

nally sliding sensing-head is extended downward through the 

assembled test rig, and alignment is obtained by rotating the 

sensing probe on the test bearings and adjusting the test rig as 

necessary u r i i i i  it is u1A.6LLLu  - 1  - - -A r.7: +h the P r n f i  corder spindle. ?'he 

test rig is then removed from the Proficorder and its actual t e s t  

shaft is installed. "ne alignment which can be obtained on the 

Proficorder is estimated to be 100 micro-inches as follows: 

Definition of true center of Top Plane 25 micro-inches 
Upper Bearing: Lower Plane 25 nicro-inches 

Definition of true center of Top Plane 25 micro-inches 
Lower Bearing : Lower Plane 25 micro-inches 
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A f t e r  i n s t a l l i n g  t h e  t e s t  r i g  i n t o  i t s  suppor t ing  f a c i l i t y ,  

ad jus tments  i n  a l ignment  from t e s t  to t e s t  can be made us ing  t h e  

c o n t a c t  p o s i t i o n  senso r  probes ( E l e c t r o  J e t  C a r t r i d g e s )  i n d i c a t e d  

i n  F igu re  7, or t h e  t e s t  r i g  can be removed f r o m  i t s  tes t -mount ing ,  

s e t  up on t h e  P r o f i c o r d e r  once m o r e ,  and a l i g n e d  a s  d e s i r e d  usir?g 

t h e  above t echn ique .  

Force Gages" 
1 1  Shown i n  F igu re  9 a r e  t h e  f o r c e  gages ' '  which a r e  used t o  

ho ld  t h e  b e a r i n g  and i t s  housing i n  t h e  assembly, and a l low f o r  

a d j u s t a b i l i t y  o f  t h e i r  s p r i n g  c o n s t a n t s .  E igh t  such buktons a r e  

used on each b e a r i n g ,  f o u r  on each s i d e  o f  t h e  b e a r i n g ,  and l o c a t e d  

i n  t h e  same t r a n s v e r s e  p l a n e  as  the  Ben t ly  gages.  The b u t t o n s  

a r e  spaced a l t e r n a t e l y  between the  Bent ly  gages ,  and measure t h e  

b e a r i n g  loads  by s t r a i n  gages .  The f o r c e  but-tori b a s i c a l l y  con- 

p r i s e s  a diaphragm element w i t h  a s t r a i n  gage a t t a c h e d  t o  i t s  back 

f a c e  which measures the  f l e x u r e  of t h e  diaphragm under load .  The 

f o r c e  b u t t o n s  h o l d  the  b e a r i n g  i n  p o s i t i o n  and a r e  loaded by 

b e l l e v i l l e  s p r i n g s  f o r c e d  downward by a th readed  loading  nut, 

( F i g u r e  9 ) .  

B e n t l y  Gages 

A number of Bent ly  gage holders  and gage i n s t a l l a t i o n  des igns  

were a l s o  i n v e s t i g a t e d .  F igure  6 and 7 show t h e  gages i n s t a l l e d  i n  

* P r i o r  usage r e f e r e n c e d  i n  t h e  fo l lowing  r e p o r t :  
Bea r ing  Atenuat ion  Experimental  Eva lua t ion  - By: J . D .  MsXugh and 
J . W .  Lund, Report  of August 28, 1961, Con t rac t  ITo. NO bs 78930 
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t h e  t e s t  r i g ,  and F igu re  10 shows an  e n l a r g e d  view of  t h e  gage 

h o l d e r  assembly and i t s  a s s o c i a t e d  p a r t s .  

o u t  through t h e  w a l l  o f  t h e  main t e s t  r i g ,  and can be assembled 

from o u t s i d e .  

p u l l e d  t i g h t l y  i n t o  t h e  s l e e v e  of t h e  gage h o l d e r  ( F i g u r e  lo). 

The e n t i r e  assembly i s  th readed  i n t o  t h e  i n n e r  b e a r i n g  housing.  

P r o v i s i o n s  have been made f o r  a c u r t a i n  o f  a i r  to be flowed 

through t h e  gage h o l d e r  and o u t  i n t o  t h e  v i c i n i t y  of  t h e  gage t i p  

a s  p r o t e c t i o n  a g a i n s t  excess  mois ture  i n  the  s e n s i n g  a r e a .  This  

a i r  i s  ig t roduced  i n t o  an annulus a t  t h e  o u t e r  ex t r emi ty  of t h e  

gage, and f lows r a d i a l l y  inward through a se r ies  o f  h o l e s  machined 

i n t o  t h e  gage h o l d e r .  I n  a d d i t i o n  to t h e  a i r  c u r t a i n ,  a t e f l o n  

cap w i l l  be a p p l i e d  to each gage t i p  t o  minimize t h e  d e l e t e r i o u s  

e f f e c t s  of wa te r  on gage s e n s i t i v i t y .  The depth  of t h e  gage i t s e l f  

i s  a d j u s t a b l e  through t h e  s l i d i n g  s l e e v e  h e l d  by t h e  c o l l e t .  

The gage h o l d e r  ex tends  

The gage i s  h e l d  r i g i d l y  by a lock ing  colle’c assembly 
L 

Contac t  P o s i t i o n  Sensors  

The c o n t a c t  p o s i t i o n  sensors  used to monitor  t h e  misalignment 

motions a r e  used i n  t he  same manner a s  a d i a l  i n d i c a t o r ,  by 

m a i n t a i n i n g  c o n t a c t  w i t h  t h e  housing and p rov id ing  a n  e l e c t r i c a l  

s i g n a l  cor responding  t o  movements to t h e  gage t i p .  These a r e  

induc tance - type  gages.  

F i g u r e  11 shows t h e  proposed thermocouple and p r e s s u r e  t a p  

l o c a t i o n s  through-out  t h e  t e s t  r i g .  Data ob ta ined  f r o m  t h e  therm- 
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ocouples  w i l l  be  used t o  c o n t r o l  t he  tempera ture  of t h e  t e s t  

r i g  t o  e l i m i n a t e  d i f f e r e n t i a l  thermal  expansion e r r o r .  T h i s  

t empera ture  c o n t r o l  i s  d i scussed  below. 

Tes t  R i g  I n s t a l l a t i o n  
1 

I n  p a r a l l e l  w i t h  t h e  test r i g  des ign  e f f o r t ,  b a s i c  p l a n s  f o r  

mounting and f o r  t e n p e r a t u r e  c o n t r o l  of  t h e  t e s t  r i g  have been 

underway. F igu re  1 2  shows a manufactur ing drawing of t h e  proposed 

means f o r  mounting t h e  t e s t  r i g .  It i s  hung i n  a v e r t i c a l  p o s i t i o n  

and suspended f r o m  i t s  t o p  f l ange  through t h r e e  rubber  mounts, i n  

t u r n  suppor ted  by t h r e e  v e r t i c a l  columns. The d r i v e  motor i s  

above t h e  t e s t  r i g ,  i n  t h e  same manner a s  du r ing  the  previous  

t e s t  program. The mounting s t and  i s  h inged  a t  a p o i n t  below t h e  

t e s t  r i g  to a l low i t  to be t i l t e d  i n t o  t h e  h o r i z o n t a l  p o s i t i o n  f o r  

any necessa ry  assembly, disassembly,  o r  recp.ired work on e i t h e r  

d r i v e  motor o r  t e s t  r i g .  The t e s t  r i g  suppor t  columns double  as 

a i r  mani fo lds  f o r  t h e  loade r  bear ings  and Bent ly  gage purge .  

3igci-e 12 3 l . s ~  :,hnmrs t h e  proposed cas ing  to be p u t  around 

t h e  t e s t  r i g  and mounting s t and .  I t s  purpose i s  t h a t  of temper- 

a t u r e  c o n t r o l  of t h e  t e s t  r i g  t o  w i t h i n  c l o s e l y  p r e s c r i b e d  l i m i k s  

to minimize i t s  d i f f e r e n t i a l  t h e r m a l  expans ion .  The c a s i n g  

compr ises  t h r e e  c l am-she l l  c y l i n d r i c a l  segments of s h e e t  meta l  

c o v e r s ,  backed w i t h  thermal  i n s u l a t i o n .  Each c lam-she l l  segment 

i s  equipped w i t h  e l e c t r i c a l  hea t ing  elements  on i t s  i n n e r  s u r f a c e  

to p r o v i d e  r a d i a n t  and convec t ive  h e a t  to t h e  t e s t  r i g  as r e q u i r e d .  
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Procurement S t a t u s  

At t h i s  t i m e ,  t h e  d r a f t i n g  work on t h e  main t e s t  r i g  i s  about  

90% complete.  The l a y o u t  drawing i s  f i n i s h e d ,  and a l l  d e t a i l  

manufactur ing drawings have been made. However, minor c o r r e c -  

t i o n s  have t o  be made and d e t a i l e d  checking of t h e i r  dimensions 

has  y e t  to be completed. Also, d e t a i l  drawings of t h e  i r , s t a l -  

l a t i o n  equipment a r e  not complete. 



I 
I '  

I V .  INSTRUMENTATION AND MEASUREMENTS 

The previous discussion of rotor-bearing dynamic analysis 

has shown that the system response to dynamic load depends upon 

the fluid film bearing characteristics and the geometric con- 

figuration such as the L/D ratio. 

on the system response for known imposed conditions, the fluid- 

film characteristics can then be calculated. Thus, it is then 

possible to extend the experimental results t o  cover rotor con- 

figurations other than the particular one under test and to 

provide a useful quantitative measure of the effects of bearing 

misalignment. 

From experimental observations 

The information which is needed to permit such calculation 

is: the amplitude of shaft rotor-frequency vibration at a given 

plane transverse to the shaft centerline in two mutually 

orthogonal directions in that plane; the phase angle between 

the motion in the x and y directions with respect to the force 

produced by the rotor unbalance; the amplitude of this transmitted 

force at rotor frequer,cy in each of two mutually orthogonal 

directions; the phase angle between each of the dynamic force 

is represented schematically components and the unbalance. This 

in Figure 13. 

As indicated previously, shaft 

y directions will be measured by tl 

displacement in the x and 

o pairs of non-contacting, edd 

current Bently inductance gages opposed in a push-pull arrangement 
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which will cancel symmetrical effects. Each of the two test 

bearings will have two planes of measurement for detection 

of shaft slope within the bearing. A total of eight pairs of such 

opposed gages is therefore provided for shaft rotor detection. 

The motion detection system consists of a regulated D.C.  

power supply (Appendix B); a sensing head in proximity to t h e  

shaft; and a distance detector unit which converts the regulated 

D . C .  supply voltage into a high frequency supply for the sensing 

head and provides the output signal in response to a change in 

displacement. 

one of the detector units of the pair is designed to produce a 

reversed output voltage for a given shaft motion. The output 

of the two detector units is then algebraically summed in a 

summing amplifier and the output signal fed into appropriate 

read-out equipment. A schematic diagram of the shaft displacement 

detection system is given in Figure 14. 

To provide a push-pull arrangement for the gages, 

_ I .  e,-. S e v e r a l  u i i i e r ~ r i i  r*eac i -uut  .iIibLi.uiiie[itS ~ ~ 2 1 1  b e  used  fi i  

evaluating shaft displacement data. For steady state, non- 

orbiting shaft positions, the output voltage will be measured 

with a precision differential D . C .  voltmeter. When the shaft 

center is orbiting, the x and y components of the displacement 

at rotor frequency will be measured with a conventional harmonic 

wave analyzer. Visual observation of the shaft center orbital 
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path will be obtained from a dual trace oscilloscope, which can 

permit two simultaneous orbital paths t o  be observed on one 

screen. 

The phase relationship between the x and y displacement 

vectors and the unbalance vector can be measured in two different 

ways. First, it is necessary to know the angular position of the 

deliberate unbalance relative t o  the shaft and the residual 

unbalance. Assuming the shaft itself to be balanced i.e. neg- 

ligible residual unbalance, unbalance is introduced by means of the 

eccenters shown in Figure 15. As the discs are rotated relative 

t o  one another an angle 8 from the zero unbalance position, an 

unbalance WJi 9 i s  introduced. The ratio of this unbalance to 

the maximum unbalance WjTm is given by the expression: 

wym L I - 

The previous equation is plotted in Figure 16, which also defines 

t 'ne Ciispiacernerii arigle 6 .  

Measurements of maximum unbalance described in Reference 4 

show a maximum unbalance Wg, = 35.2 gram inches, which compares 

well with a calculated value of 36.3 gram inches. 

Both the amplitude and angular position of the center of 

gravity of the shaft assembly vary as the eccenter disks are 



rotated. It can be shown that the angular position cp of the 

mass center of the disks is given by: 

t a n  cp = (1 - cos 0 1 / s i n  9 

Where the angle 8 is as previously defined (Reference 

Figure 16 and the angle cp is measured from the same axis and 

in the same direction as 8 . A plot of the previous expression 

is given in Figure 17. 

Thus, for a given angular setting of the disks, both the 

magnitude and position of  the unbalance are known relative to 

the rotating shaft. It then is possible to establish when the 

unbalance vector rotates past a fixed point on the test rig 

casing. An interruption on one of the eccenter discs is sensed 

by a magnetic pick-up. The signal provided by the magnetic pick- 

up can be used to intensify the "Z axis" of the oscilloscope 

trace of displacement versus time, as shown schematically in 

Figure 13. The phase angle between unbalance and displacement 

(or force) can then be determined for each of the displacement 

or force traces in turn. 

It should be noted that the "Z" axis scope intensification 

will not in general coincide with the unbalance vector position, 

as shown schematically in Figure 13. Depending upon the magnitude 

o f  unbalance selected, a fixed angle will exist between the time 

marker and the unbalance angle which must be taken into account. 
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An alternative method may also be used to establish phase 

angle between the unbalance vector and displacement o r  force 

vectors. Rather than establishing the phase angle of each trace 

in turn, the relative phase angles of the x and y displacement 

or force traces may then be measured as described previously. 

Dynamic force measurements will be made using strain-gaged 

transducers preloaded against the bearing shell. In a given 

axial plane, one pair of the transducers are diametrically 

opposed, and a similar pair is oriented at 90" to the first pair 

of transducers. The bearing shell is supported at two planes by 

a total of eight such force gages. 

Figure 18 illustrates the force vector diagram when the fluid 

film is transmitting a dynamic load. The vector sum of the 

forces sensed by the load cells are equal and opposite to the 

fluid film force Ft, since the shell is in equilibrium. The 

force Ft can be resolved into a static (or unidirectional) 

cornpnnent. W and a dynamic comDonent F, as shown in Figure 18. 

Thus the output signal from the pairs of gages can be combined to 

give the total force magnitude and direction at any instant by 

displaying the two components on an oscilloscope. Alternatively, 

the individual components in the X and Y directions can be 

mea sure d , 

U 

In the system previously described, the force signals pro- 

duced by the gages 180" apart are subtracted to yield one component 
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of  the bearing force; the second set o f  gages are similarly 

A simpli- subtracted to give the remaining force component. 

fication o f  this sytem can be obtained, however, by electrically 

subtracting the output signal of opposed gages so as to give a 

signal proportional to the difference between the loads sensed 

by each of  the gages. A block diagram of  the instrumentation is 

shown in Figure 19. 

Torque input to the test shaft is measured with a special 

non-contacting instrumentation system detecting the twist in 

the long, thin drive shaft. Details o f  this system are given 

in Reference 5 and a schematic diagram is shown in Figure 20. 

The system detects the phase shift between two toothed 

wheels at opposite ends of  the thin drive shaft. Calibration of  

the system is obtained by mounting the two toothed disks on a 

rigid shaft extension o f  the motor. The disks were rotated 

relative to one another preset amounts and the torque output 

z e t e r  res.d.jnac. l2t.pr a h  various speeds. Figure 21 shows the 

resulting calibration curve. 

u -  

Other instrumentation to be used in the collection of  

data is conventional. It includes an electronic frequency 

counter sensing the once-per-revolution pulse from an electro- 

magnetic pick-up mounted adjacent to one eccenter; multi-point 

temperature recorder f o r  lubricant inlet and exit temperature; 
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a lubricant temperature controller; rotameters for lubricant 

flow rate measurements; bourdon gages f o r  air and water pressure 

measurements. These devices are also listed in Appendix B - 

List of Instrumentation. 

- 30- 



V. TESTING SUB-TASKS 

In parallel with the design and manufacture of the main 

test rig, a number of tests are being set up and performed to 

check-out and establish the functional characteristics of the 

Bently gages, force pickups, and t o  measure loader bearing 

viscous fricbion torque. 

Shaft Displacement Gage Evaluation 

Measurements of shaft motion under static and dynamic load 

are critical to the evaluation of bearing-rotor performance. It 

is therefore worthwhile to review the reasons for selection of 

inrJlir+=lnpe - -  ~ = I V = S  as the shaft sensing element; their calibration; 

performance in the test rig; short comings; and potential 

improvements. 

In the previous bearing investigation, a comparative 

evaluation t e s t  (Reference 6) was conducted between the eddy- 

current inductance gage and a capacitance gage in measuring 

shsf't:  ri inpiit. i n  a hiimiii ~ n v i r n n m ~ n t  s i m u l a t i n g  t h a t  o f  the teat 

rig. When the capacitance probe became wet its signal could not 

be restored by blowing air around the sensing tip. The eddy- 

current inductance gage was not affected. In addition, the 

inductance gage displayed the further advantages of a high and 

adjustable sensitivity, requiring no amplification of the signal 

for display on an oscilloscope; linearity within 1% and the 

ability t o  choose a large gap (greater than 0,010 inches) between 



probe end and shaft, decreasing the probability of damage from 

the orbiting shaft. 

In these conparative tests, the inductance gage was placed 

adjacent to a rotating mild steel shaft to indicate shaft run-out. 

Oscillogram traces obtained showed sharp spikes not attributable 

to a changing gap between the probe and the shaft. Further 

investigation revealed that the signal spikes coincided with definite 

small portions of the shaft circumference over which the motion 

measurements were made. Since the eddy-current gage depends upon 

the electrical resistance of the sensed material, the sensor 

T A T = ~ R  nresumably detecting local flaws or inhomogeneities in the 

material. In view of its superior stability in a humid atmosphere 

however, the inductance gage was chosen as the shaft displacement 

sensor despite this one disadvantage. 

To investigate the possible magnitude of calibration error 

due to such potential flaws in the actual stainless steel test shaft, 

s t . a t . i ~ .  r~lihrstinn nf the - -  e a ~ e s  was conducted at ten different 

locations on the shaft surface. These data are reported in 

Reference 4. The procedure employed in effect determined the 

slope of the curve of sensor output voltage versus change in 

gap between the probe and shaft. The standard deviation of the 

calibration data was found to be only 21 micro-inches, indicating 

a uniform sensitivity for the probe-shaft combination. 
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Subsequent in place calibration checks were made in which 

the displacement of the non-rotating shaft was varied in increments. 

Measurements made simultaneously with both the inductance gage 

and an electronic contacting probe in the test assembly showed 

reasonable agreement with an average difference of only 76 

micro-inches for 21 readings. 

The effect of water on non-rotating shaft displacement 

measurements was also investigated. It was found that an air 

supply pressure of 6 psig at the gage manifold was sufficient 
to protect the gages against a 10 psig lubricant supply pressure; 

an average difference of only 40 micro-inches existed between 

measurements made with and without lubricant flow. 

Despite these optimistic indications of accuracy, the data 

of eccentricity ratio and attitude angle was found to exhibit 

considerable scatter. This is attributed primarily to the shift 

in gage zero, i.e., the output of the gage sensor corresponding 

to the shaft concentric with the bearing. Figure 22 illustrates 

the observed gage zero shift, as evidenced by traces of shaft 

orbit during half-frequency whirl at two different speeds. 

The similarity of the orbit curves is evidence of a similar 

calibration sensitivity. The sizes of the orbits are compatible 

with the possible orbit size predicted from static calibration curves. 

The apparent center of the two orbits, however, has changed between 

the two test conditions. The effect is similar t o  that which would 
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occur  i f  t h e  displacement  probe  were t o  move away from t h e  

s h a f t  a sma l l  amount. The s h i f t  i n  appa ren t  zero  i s  n o t  

i d e n t i c a l  f o r  bo th  gages,  which a r e  90” a p a r t .  

S t a t i c  c a l i b r a t i o n  checks of t h e  o r i g i n a l  c a l i b r a t i o n  

fo l lowing  t e s t i n g  i n  g e n e r a l  showed s a t i s f a c t o r y  r e p e t i t i o n .  The 

appa ren t  s h i f t  i n  bUBU m a f l p  zero  t h e r e f o r e  appears  t o  be a speed 

r e l a t e d  phenomenon which cou ld  not  show up i n  t h e  p r e l i m i n a r y  

gage e v a l u a t i o n .  Temperature g r a d i e n t s  changing w i t h  speed,  f o r  

example, can cause  such zero  s h i f t s .  

To i d e n t i f y  t h e  cause  o f  t h i s  apparent  zero  s h i f t  and 

improve t h e  accuracy  of s h a f t  displacement  measurements, a 

number of s t e p s  a r e  be ing  t a k e n .  A s  i n d i c a t e d  p r e v i o u s l y ,  t h e  

t e s t  r i g  - has  been designed to permit  opposed gages to measure 

s h a f t  d i sp lacement  i n  a given d i r e c t i o n .  Opposed gages can 

e l i m i n a t e  symmetr ical  e f f e c t s  due to t empera ture ,  c e n t r i f u g a l  

f o r c e  o r  s h a f t  s u r f a c e  speed.  Al so ,  t empera ture  g r a d i e n t s  

Y v I u I l I l l  CIIIG U L U  v 116 

ambient tempera ture  sur rounding  t h e  t e s t  r i g  cas ing  t o  co r -  

respond w i t h  l u b r i c a n t  tempera ture .  

- - < 4 - 1 - 2 - -  C L ^  C I , C  - 4  _,., v,:II ~ >= r e d ~ ~ c e ; ”  b y  ~ - ? . i s L ~ g  t h e  P x t p r n a l  

Improvements to t h e  s e n s o r - s h a f t  c a l i b r a t i o n  a r e  a l s o  be ing  

e v a l u a t e d .  One such s t e p  i s  e l i m i n a t i n g  t h e  probe s e n s i t i v i t y  

t o  w a t e r  d r o p l e t s .  Tes t s  have shown t h a t  an a i r  c u r t a i n  can 

p r o t e c t  t h e  gage s e n s i n g  t i p  when t h e  s h a f t  i s  s t a t i o n a r y .  It 

i s  p o s s i b l e ,  however, t h a t  t h e  a i r  p r o t e c t i o n  i s  i n e f f e c t i v e  

a g a i n s t  wa te r  when the  s h a f t  i s  r o t a t i n g  a t  high speeds .  
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F i g u r e  23 shows t h e  e f f e c t  o f  immersion i n  wa te r  upon t h e  

s t a t i c  c a l i b r a t i o n  cu rve .  It w i l l  be  seen  t h a t  immersion i n  

wa te r  changes s u b s t a n t i a l l y  t h e  p robe - to - sha f t  c l e a r a n c e  f o r  a 

g iven  v o l t a g e  w i t h  l i t t l e  change i n  t h e  curve  s l o p e ,  i . e . ,  

s e n s i t i v i t y .  It w i l l  a l s o  be seen t h a t  l i t t l e  e f f e c t  i s  observed 

between ' 'd ry"  c a l i b r a t i o n  and with t h e  probe immersed i n  a 

s i l i c o n e  o i l .  S h i e l d i n g  of t h e  probe by means of a Teflon cap 

has  been found t o  reduce t h e  e f f e c t  of wa te r  upon t h e  probe 

s t a t i c  c a l i b r a t i o n ,  as  shown b y  F igure  24. The d i f f e r e n c e s  

between wet and d r y  s t a t i c  c a l i b r a t i o n s  were n o t  d i s t i n g u i s h a b l e ,  

i n  s h a r p  c o n t r a s t  to t h e  t e s t s  wli thout  t h e  p r o t e c t i n g  cap.  

Ben t ly  Gage Checkout Tes t  R i K  

To provide  f o r  adequate  checkout and v e r i f i c a t i o n  of t h e  

accuracy  o f  t h e  Ben t ly  gages i n  the  wa te r  environment,  p r i o r  

to i n s t a l l i n g  them i n  t h e  main t e s t  r i g ,  a program of  t e s t i n g  t h e  

gages i n  t h e  p r e v i o u s l y  u s e d  t e s t  r i g  ( C o n t r a c t  NAS 3-2111) i s  

underway. 

It i s  planned to e v a l u a t e  the e f f e c t i v e n e s s  o f  the  Teflon 

s h i e l d i n g  cap when t h e  s h a f t  i s  r o t a t i n g  i n  t h e  t e s t  r i g  and 

w i t h  l u b r i c a t i n g  wa te r  and/or o i l  supp l i ed  to t h e  t e s t  b e a r i n g s .  

The t e s t  s h a f t  w i l l  b e  supported on PJlRC #7207, Class  5 angu la r  

c o n t a c t  b e a r i n g s  to e s t a b l i s h  a r e f e r e n c e  p o s i t i o n  f o r  t h e  gages.  

Opposed Ben t ly  gage s e n s o r s  w i l l  be  i n s t a l l e d  to measure s h a f t  

c e n t e r  p o s i t i o n  a d j a c e n t  to t h e  b e a r i n g s .  With such an arrangement,  
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i t  should then  be p o s s i b l e  t o  a s s e s s  t h e  gage improvements ( i . e .  

opposed probes ,  t e f l o n  t i p s ) ,  i n  a dynamic e v a l u a t i o n  from 

3600 to 30,000 rpm. 

The r i g  f o r  t h i s  t e s t i n g  i s  shown i n  F i g u r e  25. The t e s t  

s h a f t  i s  h e l d  i n  two a x i a l l y  pre- loaded  a n g u l a r  c o n t a c t  b e a r i n g s  

which a r e  o i l - l u b r i c a t e d .  'The iube o i l  i s  d i s c a r d e d  w i t h  t h e  

wa te r  used i n  t h e  t e s t .  This  r i g  i s  des igned  f o r  o p e r a t i o n  over  

t h e  f u l l  speed range of 3600 to 30,000 rpm. A t  t h i s  t i m e  t h e  

d e t a i l  manufactur ing drawings o f  t h e  components f o r  t n e  t e s t  r i g  

m o d i f i c a t i o n  have been r e l e a s e d ,  and f a b r i c a t i o n  o f  t h e  p a r t s  i s  

about 90% complete .  

E f f e c t s  o f  S h a f t  Inhomogeneities 

Mzans f o r  xinirnizing c a l i b r a t i o n  e r r o r s  due t o  s h a f t  f laws  

o r  inhomogenei t ies  a r e  a l s o  being thoroughly  i n v e s t i g a t e d .  

F i g u r e  26 i s  a photograph of t he  b a s i c  c a l i b r a t i o n  dev ice .  The 

s t a i n l e s s  s t e e l  t e s t  s h a f t  i s  mounted on l a t h e  c e n t e r s .  A dua l  

micrometer head c a r r y i n g  Lne in6uc:Ldilc;t: gzge z-id 2 ;%2ze2?d ?E 

a t t a c h e d  t o  t h e  l a t h e  bed ,  The micrometer head pe rmi t s  t r a v e r s i n g  

e i t h e r  a long  t h e  a x i s  o f  t h e  s h a f t  or normal to i t  i n  0.0001 inch  

inc remen t s .  Displacement of the  probe r e l a t i v e  to t h e  s h a f t  i s  

measured by  a c o n t a c t i n g  probe ( S h e f f i e i d  E l e c t r o j e t  Sensor  w i t h  

Accutron a m p l i f i e r  d i r e c t  r e a d  o u t )  c a l i b r a t e d  a g a i n s t  Hoke gage 

b l o c k s .  Adjacent  t o  t h e  c o n t a c t i n g  proke ( s t a n d a r d )  i s  t h e  i n -  

duc tance  gage whose ou tpu t  i s  being c a l i b r a t e d  ve r sus  s h a f t  



displacement .  Output v o l t a g e  i s  measured on a h igh  p r e c i s i o n  

d i f f e r e n t i a l  vo l tme te r .  The se t -up  permi ts  a g iven  gap to be 

maintained between t h e  inductance probe and t h e  s h a f t  l i m i t e d  

only by t h e  t o l e r a n c e  of t h e  s h a f t  f a b r i c a t i o n  s o  t h a t  t h e  e f f e c t  

of f laws  upon output  v o l t a g e  can be  e s t a b l i s h e d .  

Figure 27 shows t h e  maxir?,um s h i f t  i n  t h e  c a l i b r a t i o n  curve 

which e x i s t e d  along t h e  circumference of t h e  t e s t  s h a f t  used i n  

t h e  p rev ious  program. It w i l l  be seen t h a t  t h e  s l o p e s  of t h e  

extreme c a l i b r a t i o n  curves  a r e  near1.y i d e n t i c a l .  They a r e  

s e p a r a t e d ,  however, by an appzrent  d i s t a n c e  of  3OQ micro-inches.  

Thus, t h e  c l ea rance  between s h a f t  and bea r ing  can be e s t a b l i s h e d  

a c c u r a t e l y  by back and f o r t h  motion of t h e  s h a f t  for e i t h e r  extreme. 

The ze ro  p o s i t i o n  o f  t h e  gage ( i . e . ,  t h e  ou tpu t  v o l t a g e  o f  t h e  

gage when t h e  s h a f t  and bea r ing  a r e  conceRt r i c )  however, w i l - I  

depend upon t h e  p a r t i c u l a r  s p o t  on t h e  s h a f t  which i s  be ing  sensed 

by t h e  gages.  

n=- - -=  1 --- - - - - - 7 - - - - - + c *  T . 7 A - A  n3-m; n d  ni l t  l l s i n c r  the ~ 2 l i h r a f - 7  nn 
o L i i i i i a i  I I I L U U U I L L U ~ L L V ) _ I  Y Y L I  u --- --.- 0 

dev ice  on a b r a s s  s h a f t ;  a chrorne p l a t e d  s t e e l  s h a f t ;  and bushings 

p l a t e d  w i t h  n i c k e l  and s i l v e r  w i t h  t he  o b j e c t  of producing a 

homogeneous s u r f a c e  f o r  t h e  gages to sense .  Among t h e s e  t e s t s ,  t h e  

s t a i n l e s s  s t e e l  bushing p l a t e d  w i t h  0.003 i nch  s i l v e r  d i sp l ayed  

on ly  a n  apparent  50 micro-inch zero s h i f t  when eva lua ted  a t  6 

d i f f e r e n t  a x i a l  s t a t i o n s .  Such an apparent  s h i f t  could be  ac -  

counted  f o r  by v a r i a t i o n  i n  t h e  p l a t i n g  t h i c k n e s s  on t h e  bushing ,  
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To produce t h e  maximum uni formi ty  o f  p l a t i n g  t h i c k n e s s ,  t h e  

s t a i n l e s s  s t e e l  t e s t  s h a f t  was provided w i t h  g r i n d i n g  c e n t e r s ;  

f o u r  r e f e r e n c e  s e c t i o n s  were groucd to l e s s  t han  10 micro- inch 

runou t .  One of t h e  r e f e r e n c e  s e c t i o n s  was s i l v e r - p l a t e d  and t h e  

s h a f t  remounted i n  t h e  g r i n d e r  ( F i g u r e  28) w i t h  t h e  o b j e c t  o f  

r e g r i n d i n g  t h e  p l a t e d  s e c t i o n  to 0.010 inch  t h i c k n e s s  w i t h  a 

un i fo rmi ty  of  25 micro- inches .  Even the s imple a c t  o f  remounting 

t h e  p l a t e  s h a f t  o n  t h e  i d e c t i c a l  s h a f t  c e n t e r s ,  however, t e n d s  

to vary  t h e  appa ren t  runout  owing t o  s l i g h t  s h i f t s  i n  t he  a x i s  

of r o t a t i o n .  By a d j u s t i n g  t h e  c e n t e r  p o s i t i o n ,  t h e  o r i g i n a l  

r e f e r e n c e  s u r f a c e s  were he ld  to w i t h i n  16 micro-iriches runout  

a f t e r  g r i n d i n g  t h e  s i l v e r - p l a t e d  s e c t i o n ,  

V i s i c o r d e r  t r a c e s  were nzade of t h e  "'true" and "appa ren t "  

runout  of t h e  t e s t  shai ' t  when mounted in t h e  $iqeCiSion g r i n d e r .  

Probes a r e  l o c a t e d  a d j a c e n t  t o  one a n o t h e r  i n  the  f i x t u r e  shown 

i n  F i g u r e  26. True rumout  i s  messured 5 y  t h e  E l e c t r o j e t  c o n t a c t i n g  

probe;  apparent  r s n o u t  i s  measured b y  t h e  c a l i b T a t e d  Dent ly  probe .  

Figlvzre 29 compares t h e  t r a e  and apps ren t  ranout  when t h e  

Ben t ly  gage i s  s e r s i n g  t h e  unpla ted  s t a i n l e s s  s t e e l  s h a f t .  It 

w i l l  be seen  t h a t  t h e  apparent  runout  i s  n e a r l y  10 t imes  t h e  t r u e  

v a l u e .  F i g u r e  30 shows t h e  improvement a t t a i c e d  when t h e  s h a f t  

segment sensed  by t h e  Geritly probe was s i l v e r  p l a t e d  and reground 

to 0.010 ir,ch uniform o v e r l a y .  The appa ren t  runout  was sub-  

s t a n t i a l l y  reduced;  a d i f f e r e n c e  of aboat  60 micro- inches e x i s t s  

between t h e  t r u e  and apparent  v a l u e s .  
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D i f f e r e n t  s i l v e r  p l a t i n g  t h i c k n e s s e s  were e v a l u a t e d  on 

t h e  s t a i n l e s s  s t e e l  t e s t  s h a f t ;  t h e  un i fo rmi ty  o f  p l a t i n g  

t h i c k n e s s  was main ta ined  by g r i n d i n g ,  u s ing  t h e  r e f e r e n c e  

s e c t i o n s  on t h e  s h a f t  to i n s u r e  a uniform g r i n d i n g  r e d u c t i o n .  

These t e s t s  have i n d i c a t e d  t h a t  a p l a t i n g  t h i c k n e s s  o f  about  

0.005 i nch  (Appendix C )  i s  about optimum; a maximum s h i f t  

i n  t h e  c a l i b r a t i o n  curve o f  o ~ l y  40 micro- inches  o c c u r s ,  a s  

shown i n  F igu re  31. T h i s  r e p r e s e n t s  l e s s  t h a n  1% of t h e  

d i a m e t r a l  c l e a r a n c e  of  t h e  bea r ings  t o  be i n v e s t i g a t e d .  

I n  a d d i t i o n  t o  t h e  s t a t i c  or slow speed gage e v a l u a t i o n  

t e s t s  p r e v i o u s l y  desc r ibed ,  a s e r i e s  o f  t e s t s  were c a r r i e d  o u t  

to s e e  whether  speed i t s e l f  adve r se ly  a f f e c t e d  t h e  Ben t ly  probe 

s i g n a l .  To accomplish t h i s ,  a capac i t ance  gage was employed 

as  a s t a n d a r d  of  cor?igardison. Capaci tance gages a r e  n o t  a f f e c t e d  

b y  r o t a t i o n a l  speed (Reference 1 7 ) .  

420 S.S. ( f r o m  the  sane  ba-tch a s  t he  t e s t  snzft) was a t t a c h e d  

to a v a r i a b l e  speed s p i n d l e .  Photggrsphs were t aken  o f  t h e  

s imul taneous  Bent iy  and capac i t ance  gage probe s i g n a l  a g a i n s t  

a t i m e  base .  These photographs 8 r e  shown i n  F i g u r e s  32 ar,d 33. 

A s h o r t  s h s f t  segment o f  t ype  

Again, t h e  p re sence  o f  s n a f t  f laws  pr.oduces sklzrp s p i k e s  

on t h e  Ben t ly  gage t r a c e s ,  which  a r e  ev iden t  on t h e  s lower speed 

t r a c e s .  At h i g h e r  speeds ,  t h e  s p i k e s  do no t  show up, presumably 

because  of i n s u f f i c i e n t  i n t e n s i t y  on t h e  o s c i l l o s c o p e  beam. The 

s h a f t  f l a w s  (or s p i k e s )  do pot c o i n c i d e  w i t h  t h e  t e s t  s h a f t  
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minimum and maximum rurrout positions. Hence, the amplitude of 

shaft runout measured by the two different probes is a good 

agreement over a speed range between 26~0 and 26,000 rpm. TRis 

information is presented in Figure 34. 

Force-Gage Evaluation 

As was discussed in the previous section on dynamic analysis, 

simultaneous measurement of dynamic force and shaft displacement 

permits the bearing spring and damping coefficients to be estab- 

lished. The system for force-measurements has also been previously 

described. To evaluate the adequacy of the force measuring 

system, a special test fixture has been designed. This device 

is shown in Figure 35. 

A short drive s h a f t  is supported 3n rollizg element hearings 

which are mounted in a cylindrical housing. The housing in turn 

is supported on 8 strain gage transducers in an arrangement 

similar t o  that which will be used in the water-lubricated bearivlg 

test rig. 

Dynamic forces will be imposed on the shaft by unbalance 

weights on the symmetrical disks attached t o  the rotating shaft. 

Thus, known unbalahce forces will be imposed, which can be 

verified before actual installation in the tesk device. 

One of the design objectives for the test device is to 

minimize shaft deflection at the unbalance disks. Tne unbalance 



t h e n  w i l l  not be speed dependent .  A second o b j e c t i v e  i s  to 

minimize r a d i a l  r e s t r a i n t  provided by t h e  d r i v e .  These ob- 

j e c t i v e s  a r e  no t  b y  t h e  des ign  shown, i n  which t h e  unbalance 

d i s k s  a r e  l o c a t e d  a d j a c e n t  t o  t he  p r e c i s i o n  suppor t  b e a r i n g s  

and t h e  assembly d r iven  through a smal l  d i ame te r ,  f l e x i b l e  

d-rive a t t a c h e d  a t  t h e  c e n t e r  o f  t h e  h o l l o w  b e a r i n g  s h a f t .  

Overhang weights  and s h a f t  coupl ings  a r e  t h e r e f o r e  e l i m i n a t e d .  

It i s  planned t o  r o t a t e  t h e  t e s t  s h a f t  a t  speeds up t o  7500 

rpm to c r e a t e  dynamic l o a d  of 100 l b s .  w i t h  a t o t a l  unbalance 

of 63.6 gram-inches.  For t h e  force-measuring system, a sen-  

s i t i v i t y  of  about  one pound without  excess ive  s i g n a l  a m p l i f i c a t i o n  

i s  d e s i r e d .  Th i s  should  be accomplished wh i l e  ma in ta in ing  a 

b e a r i n g  housing suppor t  s t i f f n e s s  i n  excess  o f  100,000 lbs / inch .  

S t r a i n  gage t r a n s d u c e r s  have been f a b r i c a t e d ,  assembled 

and c a l i b r a t e d  to accomplish the f o r c e  measurements ( d e f e r e n c e  

F i g u r e  9). Each t r a n s d u c e r  c o n t a i n s  f o u r  s t r a i n  e lements  a t t a c h e d  

t o  t h e  unde r s ide  of t h e  p l a t e  s e c t i o n  i r i  0. C G i i ' i P l C t C  2 r i d - n  0-  5 ~ -  

rangement.  Inc reased  s e n s i t i v i t y  and tempera ture  compensation 

a r e  t h e r e b y  a t t a i n e d .  The gages a r e  p r o t e c t e d  f r o m  mois ture  

by an epoxy c o a t i n g ,  which also s e r v e s  to anchor  t h e  l e a d  w i r e s .  

To determine t h e  p rope r  p l a t e  t h i c k n e s s  of t h e  t r a n s d u c e r  

f o r  t h e  d e s i r e d  s e n s i t i v i t y  and s t i f f n e s s ,  t h e  p l a t e  t h i c k n e s s  
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of one t r a n s d u c e r  was machined t o  d i f f e r e n t  v a l u e s .  C a l i b r a t i o n  

d a t a  f o r  t h i s  t r a n s d u c e r  i s  shown i n  F i g u r e  36. From t h i s  

i n fo rma t ion ,  a p l a t e  t h i c k n e s s  of 0.05 i nch  appears  to produce 

adequate  s e n s i t i v i t y  f o r  t h e  f o r c e  measurements. 

Loader -Bearing F r i c t i o n  Tor que 

A t e s t  r i g  has  been designed t o  pemi i t  measurement of 

l o a d e r  b e a r i n g  f r i c t i o n  to rque .  T h i s  i s  shown i n  F igu re  37. 

Two opposed p a r t i a l  a r c  l o a d e r  bea r ings  b e a r  a g a i n s t  a v a r i a b l e  

speed s h a f t  p r o j e c t i n g  f r o m  a s p i n d l e .  The p a r t i a l  a r c  b e a r i n g s  

a r e  a t t a c h e d  to a box- l ike  s t r u c t u r e  which i n  t u r n  i s  suppor ted  

a t  i t s  upper end by l o w  f r i c t i o n  r o l l i n g  element b e a r i n g s .  The 

opposed l o a d e r  b e a r i n g  arrangement produces a n e t  zero  load  on 

t h e  r o t a t i n g  s h a f t ,  minimizing bending e f f e c t s  of  t h e  s h a f t  w i t h -  

i n  t h e  b e a r i n g s .  Bearing f r i c t i o n  t o r q u e  i s  measured by to rque  

arms which r e s t r a i n  t h e  box-housing f r o m  r o t a t i n g .  A somewhat 

s i m i l a r  scheme was used s u c c e s s f u l l y  t o  measure screw-sea l  

friction t o rque  i n  a d i f f e r e n t  program. The speed range f o r  t h i s  

t e s t  i s  3600 to 30,000 rpm and i s  necessa ry  s i n c e  t h e  l o a d e r  

b e a r i n g  pads a r e  i d e n t i c a l  t o  those  t h a t  w i l l  be used i n  t h e  

j o u r n a l  b e a r i n g  t e s t  u n i t .  I n  t h i s  manner t h e  measured t o t a l  

t o r q u e  of t h e  b e a r i n g  test u n i t  can be broken down and i s o l a t e d .  
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Figure  5. Rotor - Bearing - Pedes t a l  System. 
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Figure 6. Test Rig Assembly Drawing. 
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Spindle Drive Motor 

Proficorder* 

Extension Sha f t  I 
t h  S l i d i n g  Sensing Head 

T e s t  Rig - I '  I I  I 

T e s t  Bearings / / 

I 

Figure 8. Alignment Scheme Using Proficorder. 

*Manufacturer - Micrometrical Corporation 
Model - RLF Rotary Pilotor 

Overall Dimensions - 24" Wide x 35" Deep x 72%" High 
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Figure  9.  Force Gauge Detail .  

* M a t e r i a l  - SAE 1075 Spr ing  Steel  with C a d m i u m  P l a t e ,  
Model  #1000-35 (Wal lace  B a r n e s  D i v i s i o n )  
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Figure 10. Bently Gauge Holder Assembly. 
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Figure  12. Support Structure for T e s t  R i g  
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F igu re  13. Schematic of S h a f t  Displacement & Force Gage Ins t rumenta t ion  
Requirements. 
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Figure 15. Eccenters  for Dynamic Load App l i ca t ion  
(Zero Unbalance Shown) 
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F igu re  16. Eccenter  Unbalance Rat io  a t  D i f f e ren t  Angular S e t t i n g s .  
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Figure 18. Force Vector Diagram, Dynamic Loading. 
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Figure 19. Block Diagram - Rotor Force Instrumentation. 
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Data of November 4, 1963 

T e s t  A - Half frequency whi r l  a t  17.5 cps  s h a f t  speed 

D.C. vo l tmeter  readings  
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8 3  gage - 3.8V 

Figure  22. Gage Zero Shift with Speed. 
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Figure  24. Proximity Probe Ca l ibrat ion  Curve, Probe Tip i s  Sh ie lded  
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Figure 27, Maximum Variation in Bently Probe Calibration Over the 
Circumference of a 420 S.S. Shaft Because of Non- 
homogeneities in the Shaft Material. 
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Figure  32. Comparison of Shaf t  Runout Measurements 
Bent ly  and Capacitance Probe a t  Various Speeds. 
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Figure 33. Comparison of Shaft  Runout Measurements 
Bent ly  and Capacitance Probes a t  Various Speeds. 
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Figure 34. Comparison of Shaft Runout Measurements Using Rently and 
Capacitance Probes. 
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APPENDIX A 

ANALYSIS NOMENCLATURE 

a Major a x i s  of e l l i p s e  
j 

i n .  

l b s / i n .  
A = xx - iwcxx 

b Distance between bea r ings  i n .  

b Minor a x i s  of e l l i p s e  

B = K  - i W  
j 

X Y  YX 

C = K  - iwC 
YX YX 

c R a d i a l  c l e a r a n c e ,  according t o  t e x t  

D = K  - i K C  

F Force 
Y Y  Y Y  

i n .  

l b s / i n .  

I b s / i n .  

i n .  

l b s / i n .  

l b s .  

K P e d e s t a l  s t i f f n e s s  l b s / i n .  

M One-half t h e  r o t o r  mass 

m Bearing mass 

m Unbalance mass 

P Force v e c t o r  

0 
- 

- 
Q Unbalance f o r c e  v e c t o r  (equation 6)  

q Unbalance f o r c e  v e c t o r  (equation 73 
- 

lb-sec 2 / i n .  

Ib-sec 2 / i n .  

ib-sec 2 i i n .  

l b s .  

Tbs. 

Pbs. 
- 
R Displacement v e c t o r  ( t r a n s l a t i o n a l  mode, equa t ion  4) i z l  . 
U Displacement ampli tude ( r o t a t i o n a l  mode, x-component) il. 

V Displacement amplitude ( r o t a t i o n a l  mode, y-component) i z z .  

W Load 

W Displacement v e c t o r  ( r o t a t i o n a l  mode, equa t ion  4) 
- 

lbs .  

i n .  

x Displacement ampli tude ( t r a n s l a t i o n a l  mode, x-component) in. 

x Displacement,  x-component i n .  

Y Displacement amplitude ( t r a n s l a t i o n a l  mode, y-component) i n .  
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APPENDIX A (CONTINUED) 
ANALYSIS NOMENCLATURE (CONTINUED) 

Y Displacement , y-component 

a Angle between x and x' 

In f luence  c o e f f i c i e n t ,  displacement a t  b due t o  
u n i t  f o r c e  app l i ed  a t  a aab 

Inf luence  c o e f f i c i e n t s  
j 
a 

S Frequency r a t i o  a t  t h re sho ld  cjf i n s t a b i l i t y  

Unbalance e c c e n t r i c i t y  
60, &l 
- 
6 S t a t i c a l  displacement  vec to r  

597 See Figure  4 

V Se l f - sus t a ined  v i b r a t i o n  frequency a t  th re sho ld  
of i n s t a b i l i t y  

0 Phase angles ( see  Figure 3) 

JI Angle between unbalance vec to r s  

w Rnta t iona l  speed 

%s 3 'np 

Supe rsc r i p  t s 

(- 1 Dimensionless q u a n t i t y  of (nonvac t o  r i a  1) 

( * I  Time d e r i v a t i v e  

S u b s c r i p t s  

x, y x - and y - components 

c ,  s cos ine  - and s i n e  - component 

degrees  

in / lb .  

i n / lb .  

dimensionless  

i n .  

i n .  

dimensionless  

d imecs i o n l e s s  

degrees  

degrees  

rad /sec .  

rad/sec.  

0 Rotor mass s t a t i o n  

S Journa l  s t a t i o n  



APPENDIX A (CONTINUED) 

S u b s c r i p t s  (Continued 1 L 

b Bearing s t a t i o n  

q Unbalance s t a t i o n  

j = 1, 2, ... 8 S t a t i o n  number as shown i n  F igure  4 
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APPENDIX B 

NASA DYNAMICS INSTRUMENTS 

I 

1. 

2 .  

3. 

4 .  

5 .  

6 .  

7.  

8. 

9 .  

10.  

11. 

12 .  

13. 

1 4 .  

15.  

16.  

Bent ly  H-1-084-3 Sensors  

Ben t ly  D-152 De tec to r s  

Summing Ampl i f ie rs  - Donner 3400 

Readout - Fluke  Voltmeter  Model 80 iB 

Readout - Tekt ronix  5 6 1 ~  Osci l loscope  

Wave Analyzer - General  Radio Type 736A 

Phase Meter Type 320-A - Technology Instrument  Corpora t ion  

E l l i s  Bridge Ampl i f ie r  Meter - Model B A N - I  

K i n t e l  D . C .  Ampl i f ie r  Model 111 BF 

H e w l e t t  Packard 52lC Frequency Cc,unter 

E l e c t r o  Products  3010 AN Magnetic Pickup 

Brown Model 153X62P16-X-50 Recorder  

Lube Temperature Con t ro l  - Taylor  1 6 2 ~ ~ 1 3 1  C o n t r o l l e r  

Bear ing  Lube F low - Brooks Rotameter Type 8-1110-10 

Ashcrof t  Duragage 

S h e f f i e l d  Accutron Amplif ier  Readout f o r  E l e c t r o j e t  
Displacement Sensor - Nodel 51 #1530 



L 

APPENDIX C 

PROCEDURE FOR SILVER PLATING CALIBRATION TEST SHAFT 

420 S t a i n l e s s  S t e e l  

S i l v e r  P l a t  i n  g 

1. Anodic E l e c t r o l y t i c  Cleaning 
Rinse 

2 .  N i t r i c  + Hydrof luor ic  Acid Etch  
Rinse 

3. F luobor ic  + Hydrof luor ic  Dip 
Rinse 

4. Vapor B l a s t  
Spray Rinse 

5 .  Nicke l  S t r i k e  
Rinse  

6 .  S i l v e r  S t r i k e  

7 .  S i l v e r  P l a t e  
Rinse  + Dry 

8 .  Grind to Tolerance  

9. Apply "Tarniban" 
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